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ABSTRACT

Cellular d-graph languages are shown to be closed
under set theoretic operations , including finite union
and intersection ; and under “geometric ” operations ,

• including permutation of arc end numbering , concaten-
ation , closure, and formation of line graphs. Deter-

C_)  minism is preserved under the set-theoretic operations;
but under the geometric operations , determinism is

LJ~I known to be preserved only when the languages are also
predicates.
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1. Introduction

Cellular d-graph acceptors were defined and studied in

[1-41. Given a cellular d-graph acceptor N = (rM ,H) with a

distinguished node having a special mark , we say that N

accepts I’ if the automaton at the distinguished node enters

a final state after finitely many steps. For a given finite

state automaton M = (Q1,Q,6,F), where 6 is a function from

Q x Dd x Qd into Q, D = {l,2,. . . ,d}, let C(M) = {MIM=(r ,M ,H)

is a cellular d—graph acceptor with a distinguished node)

be the class of cellular d-graph acceptors determined by M.

Whenever no confusion can arise, we shall refer to C(M) as

the cellular d-graph acceptor of M. The language of d-graphs

accepted by C(M) is the set L(M) = {rIM=(r ,MH) EC(M) accepts

N. A d—graph F is accepted by C(M) if f. r€L(M) . The class

of languages accepted by (deterministic) cellular d-graph

acceptors is called the class of (deterministic) cellular

• d-graph languages, (D)CdL.

If we call the final states F of M accepting states and

in addition M has another special subset R of states such that

R c Q and R II F = 0 called the rejecting states, M in this
case is denoted by a 5—tuple (Q1,Q,d , F,R). We say that

• M= (r,M,H) rejects F if the automaton at the distinguished

node enters a rejecting state after finitely many steps.

Let L’(M) = {rIM=( F, M,H)EC (M) rejects r}. A d—graph 1’ is

rejected by C(M) iff. FEL’(M) . C(M) recognizes a d-graph



language L if f. C (M) accepts every d-graph ~EL and C (M)

rejects every d-graph r~ L. L is sometimes called a cellular

d-graph predicate, and C (M) is called a cellular d-graph

• recognizer. Every cellular d—graph predicate is a cellular

d-graph language.

For any d-graph F, U(F) denotes the underlying graph of

F , and for any y EG~ = {yly=u(r) for some d-graph r over Li,
U~~ (y) = {rly=u (r)} . C(M) accepts a node-labelled graph ‘i

if C (M) accepts some d-graph in U~~ (y). The acceptance is

strong if C (M) accepts every d-graph in U~~ (y). C (M) accepts

(strongly) a language LcG~ when yEL if f. C (M) accepts y

(strongly). C (M) rejects a node—labelled grap~ y if C (M)

rejects every d-graph in U~~ (y). C(M) recognizes a predicate

L~ G~ if f. C (M) accepts every yEL and C (M) rejects every

y~ L. The recognition is strong if the acceptance is strong.

It should be pointed out here that “C(M) accepts y

strongly ” means that acceptance by C(M) does not depend on

how the arc ends of y are labelled. However, each transition

of M may depend on the neighbor vector , so that each N=(F ,M,H)

for FEu~~ (y) need not be a weak cellular d-graph automaton as

defined in (1]. Conversely, a weak cellular d-graph automaton

N has a transition function that is independent of the neighbor

vector H, but acceptance of a graph ky N may depend on the

• numbering of the arc ends ; thus the acceptance of the under-

lying graph is not necessarily strong.

_____
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In the definition of a cellular d-graph acceptor with

a distinguished node D, D may be any non-# node of the

d-graph. In fact, in all the cellular d-graph automata

defined in (1-4), the position of D does not affect whether

the d-graph is accepted or not. Of course the speed of

acceptance can depend on where D is placed, for example ,

when D is at a central point of the d-graph [4). In this

paper, we are not concerned with speed . We assume that all

the cellular d-graph automata in this paper have a distin-

guished node.

We presented some deterministic cellular d-graph lan-

guages and predicates in [2-4]. In this paper we will

investigate closure properties of the cellular d-graph

languages under various set-theoretic and geometric oper-

ations.

k
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2. Set-theoretic operations

Proposition 1: A finite intersection of (deterministic)

cellular d—graph languages (predicates) is a (deterministic)

cellular d—graph language (predicate) .

Proot: Let M
1
,,...,M be f inite state acceptors such that

the cellular d-graph acceptors C(M1L,...~~C(M~) accept the

CdL’ s L
1
1..., L .  Def ine M as follows: the states of M are

n-tuples in Q1x. . .xQ~ and the accepting states of M are

F1x...xF~ where Q. is the state set of M1 and F1 is the

accepting state set of M1 (l~.i~n). The components of the

state of M are independent of each other, where the ith

componen t simulates the change of state as dictated by M1
and the ith components of its neighbors ’ states. Whenever

the ith component reaches a final state of M , it remains

unchanged , while the other components continue to simulate

the other M
i
’s. Then C (M) accepts F if f. each C(M~) accepts

F iff. f’ t L l f l • • • t l L n • Also M is deterministic iff. every

M1 is deterministic (l~ i~n). If each Mi is a recognizer of

L . ,  then M is a recognizer of L11L..flL~ provided C (M) rejects

F as soon as one of the components (say the ith) of the state

of M is in a rejecting state of M1. //

Proposition 2: A finite union of (deterministic)

d— graph languages (predicates) is a (deterministic) cellular

d—graph language (predicate) .
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Proof:  Define M’ in the same way as M in Proposition 1

except that S (S1....1S~ ) is an accepting state of M’ i f f .

S1 is an accepting state of M1 for some i, l~ i~ n. If the

M1 s are recognizers , (S1,.. ..S~ ) is a rejecting state of M’

iff. for every i, ~~~~~ S1 is a rejecting state of M 1. II

Proposition 3: Any singleton H’) is a deterministic

cellular d-graph predicate .

Proof: We can define a cellular d-graph recognizer N~

which discovers whether a d-graph is isomorphic te U(1’) (3),

with the added requirement that N 1. further checks the arc

end nwnberings .ifter isomorphism to U(F) is confirmed . M~.

accepts a d-graph only when all the arc end numberings are

exactly the same as in I’, and rejects all other d-graphs .

Clearly N
1 
accepts only 1’ . //

Proposition 4: Any finite set of d—cjraphs is a deterministic

cellular d-graph predicate.

Proof: Propositions 2 and 3. 1/

The set complement of a cellular d-graph language I.

is the set of all d—graphs (having the same node label set

as the d-graphs in L) that are not in L. Clearly cellular

d-graph predicates are closed under complementation , but it

is not known if the cellular d-graph languages are.

In graph theory , the complement of a graph G is a graph

having the same nodes as G, and in which two nodes are joined

• ______ ______
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by an arc if f. they are not neighbors in G. However, the

complement of a d—graph G is not necessarily a d—graph .

In fac t, its nodes have degree ~ (the number of nodes in G)-l
,

which is not bounded . Therefore it is not appropriate to

consider complements of d-graphs.

• ---———~~~~~~~~--—~~~~~~~~~~~ -— _ _ _ _ _ _ _ _ _  
_ _ _



3. Permutation

We next consider some “geometric ” operations on cellular

d-graph languages. For any d-graph 1 , a renumbering of 1’ is

a d-graph obtained by renumbering some (possibly none) or all

of the arc ends of F; thus it is a d-graph having the same

underlying graph as r. For any cellular d-graph language L ,

the renumbering closure of L is the set of all renumberings

of the d-graphs in L. If the underlying graph of every

d-graph in L is accepted strongly by a cellular d-graph

acceptor , then = L.

Proposition 5: The renumbering closure of a (dcterr~tinistic)

cellular d-graph predicate is a (deterministic) cellular

d-graph predicate.

Proof: Let C (M) recognize the cellular d-graph predicate

P. Define a finite state recognizer A such that its states

have a component which is a permutation of the numbers

l,2,...,d , and which is initially (l ,2,...,d). This permu-

tation vector is used to implicitly define a renumbering of

the arc ends at a node. Specifically, the vector ~i1~~ • •  
~~~~

indicates that the ith arc end is now renumbered as

~~~~~ For any d—graph r , A = (F ,A ,H) can first construct a

depth—first spanning tree to get an ordering of the nodes [41.

Then it can change the permutation vector at each node

systematically using the ordering of the nodes. Each

change implicitly represents a new d-graph F1 which is a

renumbering of F. The states also have another component

that stores the nodes ’ initial states. A restores the



~niti .il states at the nodes of F and then simulates (F 1,M,H).

If it reaches an acceptance state of M then A accepts I’

since F is a renumbering of r1 and F1€P. Otherwise it

reaches a rejecting state of M , and a change of the permut-

ation vectors is made to give a new renumbering of F , where

again A checks whether C(M) accepts this new renumbering .

If all the renumberings have been checked and the acceptance

• state was never reached , F is rejected . It is easy to see

that A is deterministic if M is. lI

It is not known whether the renumbering closure of a

deterministic cellular d-graph language L is a deterministic

cellular d-graph language. The construction in Proposition

S does not work when I is not a predicate since for some

renumbering F1 of F , the cellular d-graph acceptor may not

• accept F1, and may not stop; thus it is not possible for A

• to test all the other renuinberings which may be in L.

Proposition 6: The renumbering closure of a cellular d-qraph

language is a nondeterministic cellular d-graph lanauaae .

Proof: Define A’ in the same way as A in Proposition 5

except that A’ is nondeterministic , so that after getting a

new numbering, A’ = (F ,A’ ,H) can start simulating (1’1,M ,H)

or can change to the next new numbering . Thus A’ accepts F

iff. one of the renumberings of F is in I iff. r is a

renumbering of a d-graph in L. // 

~~~
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A renumbering is a permutation of the arc end numberings.

We can also consider permutation of node labels. As in the

proof of Proposition 5, we can order the nodes and then

systematically test every permutation of their labels , so

that this closure too is a deterministic cellular d—graph

predicate . Another kind of permutation we can consider is

permutation of the nodes. However , the resulting d-graph

is just an automorphic image of the original one , and so

• is not distinguishable by a cellular d-graph automaton .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4. Concatenation and closure

Let there be given two d-graphs F1, r2, where both F1 and

F1 have a # node. A concatenation of F1 and F2, denoted by

is a d-graph obtained by performing the following

operations: (1) delete the two * nodes n1,n2 and the arcs

(n1,m1), (n2,m2) joining n1,n2 to their neighbors m11m2 in

F1, r2 ,  respectively; (2) connect F1 and F2 with a new arc

(m1,m2); and (3) assign the numberings of the arc ends

(m1,n1), (m2,n2) to the ends of this new arc at nodes m1,m2.

If one of the d-graphs does not have any # nodes, then con-

catenation is not defined.

Two d-graphs may have many different concatenations , since

each of them may have more than one * node, and there is a

concatenation associated with each pair of * nodes of F1 and

F2. For example, if

B

Fl is:c7
a
\k

N:~~ 
1
4# 

F2 is

then B F

ii - -- - — — -  -~~~~~~~ — —- • . - • .•
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and 

~~~~~~~ 2\,~A 
~~~ F K

D
W’3 

~~~~ 
*

H M

are both concatenations of and

It should be pointed out that if {F 1•r 2) denotes the

set of all concatenations of F1 and then {r 1~r2)

However , associativity does not hold , i.e. t (1’
1

l’2)~~r3
} ,‘

( ] (l’,.1 3) since

t ~(F 1~ F2)~ F3} but .t

and if both I’l and F2 have only one * node , and F3 has at

least two * nodes then {(F 1•F 2
)1’ 3} is empty but

is not empty . We denote by F1~ F2 ~~~. ~~~~ the set of d-graph~;

resulting from taking the concatenation of the n given

d-graphs in any associative order. Fur example , t1’ 1.i’2.r 3} =

(F 1 (r2~ F 3)} u {(r1.r 2)~ F3}.

The new arc joining F1 and 1 2 is always a bridge in

and it is called a concatenative bridge. Not every

bridge in F1.F 2 is a concatenative bridge , since 1’~ and F2

may themselves have bridges.



- ~

For any cellular d-graph language L , the closure

of I is the set of all concatenations of d-graphs in L ,

i.e. I
4 

= {F 1 I’2 • .. ••F n Ifl�l l F~ EL for l~.i~n}.

Proposition 7: The closure L+ of a (deterministic)

cellular d-graph predicate L is a (deterministic) cellular

d-graph predicate.

Proof; In [4] it was shown that there exists a deter-

ministic cellular d-graph automaton which identifies all

the bridges of a d-graph and always terminates. Define a

cellular d-graph recognizer N with a distinguished node 0

• such that for any d-graph r , it identifies all the bridges ,

• and also gives an ordering to the bridges. Each bridge may

or may not be a concatenative bridge. N can systematically

consider different subsets of the set of bridges as concat-

enative bridges. For each subset of bridges of size k,

0s.k
~
t(=the number of bridges in F), if each bridge end-node

treats the neighbor at the other end of the bridge as a *

node, then F is implicitly decomposed into k+l components .

Let D, together with the bridge end-node further away from

D in a breadth-first spanning tree, be the distinguished

nodes of the components that they lie in. (Note that each

component has only one distinguished node.) N can then test

to see whether each component belongs to L. As soon as

either component is rejected , N restores the initial states



of the nodes and proceeds to check another subset of bridges .

N accepts r if it succeeds in finding a set of bridges such

that all the components are in I. If all sets of bridges

are checked without success, N rejects r . Clearly N is

deterministic if I is. //

Proposition 8: The closure of a cellular d-graph lan-

guage L is a nondeterministic cellular d-graph language .

Proof: Define a cellular d-graph acceptor A similar to

N in Proposition 7 except that each time a subset of bridges

is identified , A can nondeterministically choose to check

if the components are in I, or can go on to test another

set of bridges. li

The concatenation of the cellular d-graph languages

L l , L 2 1 . . . , L k is the set of d—graphs L 1 L 4
.... L k =

~~~~~~

Proposition 9: A concatenation of (deterministic) cellular

d—graph predicates is a (deter:~inistic) cellular d-yraph

predicate.

Proof: Let I1,.. ., L 2 be cellular d—graph predicates.

The proof is analogous to that of Proposition 7, except that

now N decomposes ~
‘ into exactly k components , and for each

• subset of k—l bridges , N systematically tests the ki ways

that the components can be in I1,.. .,Lk, since the ordering

of the bridges gives an ordering of the components. /1

~

i

~

iEii I:Iii

~ 

•



Proposition 10: A concatenation of cellular d—graph

languages is a nondeterministic cellular d-graph language.

Proof: The proof of Proposition 9 can be modified the same

way as in Proposition 8. 1/

We do not know whether closures or concatenations of

deterministic cellular d-graph languages, which are not

predicates , are deterministic cellular d-graph languages.
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5. Line graphs

The line graph of a graph G, L(G), is the graph obtained

by creating a node for each arc of G and joining together

those nodes corresponding to arcs that are adjacent (i.e.,

have a common endpoint) in G. If the degree of G is bounded

by d, the degree of L(G) is bounded by 2(d-l). If G1 and G2

are isomorphic , then obviously L(G1) and L(G2) are. The

following two theorems give a characteriza tion of line graphs.

Theorem (Whitney): Let G and G’ be connected graphs with

isomorphic line graphs. Then C and G ’ are isomorphic unless

one is C3 and the other is K1 ~ 
where C3 is the graph ,/ ‘

and K1,3 is

Proof: See [5] p. 72 or [61. The line graph of K1 3  or of

C3 is C3. II
Theorem (Krausz): H is a line graph if f. the arcs of H

can be partitioned into complete graphs in such a way that

no point lies in more than two of the subgraphs.

Proof: See [5] p. 74 or [7]. 1/

Intuitively, the arcs of a line graph H L(G) at each

node can be divided into two classes , one associated with each

end of the arc of G which n represents. All the arcs m ci-

dent upon the same node of G form a complete subgraph of H.

Given the partition of arcs at each node of H as in Krausz ’s

theorem, G can be readily constructed . By Whitney ’s theorem ,

for a line graph which is not C3, there is only one way up to 

-~~~~~ - - • --
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isomorphism to partition the arcs at the nodes so as to

satisfy the cr iteria of Krausz ’s theorem. There may be

more than one way to partition the arcs at a node into two

classes which form complete subgraphs with the nodes at the

other end of the arcs. However, if the partition at a node

is not correct and we continue to partition the arcs of the

other nodes , then we will reach a node whose arcs cannot
• I be partitioned so as to satisfy Krausz ’s criteria because

otherwise Whitney ’s theorem will be violated. For example ,
-e

the graph G: b ‘
~a is the line graph of H :

“42

• The triangle ~complete graph of three nodes) in G defined

by l’ 2 ’ 3  is associated with node Q of H because

are the three arcs incident upon Q. The comple$e graph in

G associated with node R of H contains only one node

The correct partitions of the arcs at the nodes of G

are indicated in the above figure; the arcs with the same

labels (a, b, or C) belong to the same class. Suppose that

in the partitioning process , the arcs at node were erron-

eously divided into the two classes { 
~~~~~ 

(t,~,e~ ) }  and



~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

This forces the partition at node 
~2 

to be

)~ ~~2~e3) } . Therefore at node t 3 1 {(e 3, t’1),(e 3, e5)

is one class of arcs, {(e 31 . 2)} is another class , and the

arc ( 3~~ 4) belongs to neither class. Hence the mistake

made at node is discovered.

-

• 

A line graph of a labelled graph y, denoted by L(y), is

a labelled graph such that:

(1) the node label set of L(F) is SxS, where S is the

• set of node labels of F;

(2) if x represents arc (in ,n) of F and the labels of

m ,n are A ,B, then node x of L(1’) has label either (A ,B) or

(B,A) .

A line graph of a d-graph F, denoted by L(F), is a

2(d-l)-graph such that the underlying graph of L(F) is a

line graph of U(r), the underlying graph of F. A d-graph 1’

has many line graphs, since a node of L(F) may be labelled

(A,B) or (B,A) and there are many ways to number the arcs.

The line graph set L(L) of a d-graph language I is the set

of all line graphs of d-graphs in L. In considering line

• graphs, the main interest is in the structure of the graph;

therefore we have often ignored the labels of the non-* nodes ,

or assumed that all the non-* nodes have the same label, which

is the same as if the non-I nodes were not labelled . We will

call such d-graphs unlabelled d-graphs.



Proj~os1t1on 11: There exists a deterministic cellular

d-graph recognizer N with a distinguished node that accepts

all (unlabelled) d—graphs whose underlying graphs are line

graphs. Moreover , when N accepts, the arcs at each node

are partitioned into two classes of which one may be empty

• and the arcs in each class belong to a complete subgraph .

Proof: N first verifies whether the underlying graph is

C3 and accepts the d-graph if it is. Otherwise , N constructs

a depth—first spanning tree and an ordering of the nodes as

in [4]. Each node’s state has a classification component

(al,...,ad) where a~~ {*.b~r~N}. Here a1 = I if the ith

neighbor is a * node; otherwise initially a
~ 

= N and it is

changed to b or r later to indicate which class the ith arc

belongs to. N can systematically (according to the ordering

of the nodes) divide the non-I arcs at each node into two

classes (one may be empty) in all possible ways and test

whether they form complete subgraphs as in Krausz ’s theorem.

The test for complete subraphs is the same as the test for

complete graphs in [2], except that now the nodes which are

not at the other ends of the arcs in the same class are ignored .

If any • partition of the arcs is successful then N accepts

the d-graph, since its underlying graph is a line graph ; and

the classification components at each node tell how the arcs

at each node are partitioned . II

T~~~T~~I~~~~~~~~~



If the d—graph is labelled , and the nodes have labels

in SxS for some label set S, then the partitionb.g of the

arcs at the nodes with labels (t 1s 12) where £l~~ 2 
is much

simpler, since the arcs leading to nodes having £~ in their

labels form one class and those leading to arcs having £ 2
in their labels form another class. If a neighbor does not

have £~ or -e 2 in its label, then the d—graph is not a line

graph.

We will now show that labelling the arc ends of the line

graph L(F) in a special way will allow a sequential (2d-2)-

graph automaton A on L(F) to simulate a sequential d-graph

automaton F on 1’. First let us look at an example:

F: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(1, 2] [4 , 2]

[4 , 3]



The arc ends of L(F) at a node x are numbered so that

the arcs associated with one end of the arc of 1’ that x

represents are assigned primed numbers, while those associ-

ated with the other end are assigned unprimed numbers.

Suppose A is located at some arc end of F , say arc end

(A ,B) near node A. Then F should be on some arc end at node

AB of LU’), and this arc should be associated with node A ,

i.e. should be part of the subgraph induced by node A.

Therefore F may be on the second , third , or fourth arc end

at node AB of LU’). There are two kinds of moves A can make :

(1) A moves to the other end of the same arc . Then F

simply needs to move from an unprimed arc end to a

primed arc end or vice versa at ‘- he same node.

(2) A moves to another arc end at the same node , say

from arc end (A,B) to arc end (A,E) at node A. Then

F must move to the first , second, or third arc end

of node AE of LU’), since these arcs are induced by

node A. This means that F first moves to the arc end

at AB , which would lead to AE, and then moves to the

end near AE. The numbering of the arc ends is

designed so that if (A,E) is the fourth arc end at A

in F , then the arc end at AB that leads to AE is

labelled 4 , and F knows exactly how to get to node AE.

If F was at a primed arc end , say the fourth arc end

of AE (this means that A is at arc end (E,A) at node E),



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
•-•

then to simulate A moving to the third arc end at

E, F moves to a primed arc end , the third arc end

of AL and then moves toward DE.

This numbering of the arc ends of L(F) can always be done

because in the complete subgraph S of L(F) induced by a

node n of F , the nodes of L(F) represent the arcs of I’ near

node n. We can give each node of S the number of the arc

end that it represents. These numbers are all distinct.

Thus all the arc ends in S leading toward the node with

number i are all numbered with i. The arc ends at the nodes

of S that do not belong to S will have primed numbers in

order to avoid confusion. Of course, these primed and un-

primed numbers are not the actual arc end numbers of LU’),

but they can be defined implicitly . Moreover , one of the

numbers at the ends of an arc may be primed while the other

is unprimed ; as an example , see the arc joining AB and BC

in L(F).

Proposition 12: Let L be a (deterministic) cellular d-

.graph language (or predicate) such that for any d-graph

fl€L , the renumbering of 11 is also in I. Then L(L) is a

(deterministic) cellular d—graph language (predicate).

Proof: Let C (M) accept I. Let N = (F ,M,H) be a cellular

(2d—2)—graph acceptor such that it first determines if 1’ is

a line graph by imitating the recognizer in Proposition 11.

Suppose F is a line graph; then each node ’s state has a
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classification vector. M makes sure that each class has at

most d-1 elements , since each complete subgraph is induced

by the arcs at a node of a d-graph. Now N proceeds to impli-

citly assign primed and unprimed numbers to the arc ends as

follows: for each complete subgraph S, N gives each node of

S a distinct number in Zd = (1,... ,d). Hence each node x

of F has a pair of numbers , of which the first one corresponds

to its number in the subgraph specified by the b’s in its

classification vector, while the second one corresponds to

that of the r’s. Now N rewrites the classification vector

(a1,... ,a2d_2) of a node n into (ml,...,m2d ..2) so that when

the numbers of n ’s ith neighbor are (c1,c2), if a1 = b then

= C1, and if a1 = r then in
1 

= c2’. After the non—I at’s

have changed , the other m
a
’s are assigned numbers so that

d-l of the m
3
’s are distinct and in Zd, the other d-l are

distinct and in Zd ’ = {l’,...,d ’},  and in .  ~ n1, m~ ~ n~ for

any 1~ j~ d-2 where (n1,n2) is the pair of numbers of node n.

The classification vectors implicitly give a numbering of a

d-graph ri such that .r = L(fl).

Let A be a sequential d—graph acceptor that simulates the

cellular d-graph acceptor M = (11 ,M ,H) on II [1]. Now define a

sequential (2d-2)—graph acceptor A such that:

(1) If A moves to the other end of the same arc , then A

moves from an unprimed arc end to a primed arc end

or vice versa at the same node. 

- • ~~~~~~~~-- --- -- • - _ _ _ _ _



(2) Suppose A moves to the ith arc end at the same node ,

and A is on an arc end with an unprimed number. If

i is not in the node ’s classification vector then A

need not move ; otherwise A moves to the arc end

possessing the number i and then moves to the other

end of that arc.

From the discussion preceding the proposition , A on this

assignment of F simulates A on II. Therefore A accepts this

assignment of F iff. A accepts fl , i.e. I1~~L.

N can simulate A on F. N accepts F iff. A accepts , i.e.

II€ L . Since H is a d—graph such that I’ is its line graph ,

and any renumbering of H is also in L , N accepts L(L). Note

that if it is not known whether a renumbering of 11 is in I,

then we cannot conclude that F,~L(L) even though fl,~L , since

there may be a renumbering of 11 in L and F is its line graph.

Clearly, N is deterministic if N is and N is a recognizer

if N is. //
Proposition 13: The line graph set L(L) of a (deterministic)

cellular d-graph predicate L is a (deterministic) cellular

(2d- 2) —graph predicate.

Proof: For any (2d-2) graph F , each node belongs to at

most two complete subgraphs. The ordering of the nodes of F

induces an ordering of the complete subgraphs of F. There-

fore N of Proposition 12 can be modified to systematically

assign primed and unprimed numbers to the nodes and thus 

~~~~~~~ -~~~~--- —-----~~~ - - ~~~~~~~~~~~~ -- —— — -~~~~~~~~~~~~~ •~~~~- ~~~~~~~~~~~~~~~



--
___

implicitly define different d-graphs with the same under-

lying graph. When A accepts, N accepts. If A rejects, N

tries a new assignment of numbers and hence a different

numbering of the d-graph. N rejects when all possible

nuinberings fail. //
Proposition 14: The line graph set L(L) of a cellular

d-graph language is a nondeterministic cellular (2d-2)-graph

language.

Proof: Similar to Proposition 13 except that when all the

nodes receive a new pair of number assignments, the cellular

(2d-2)-graph acceptor N’ may nondeterministically proceed

as N or may start giving the nodes another number assignment. II

_______________________________ _ _ _ _ _ _ _ _ _
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6. Concluding remarks

Cellular d-graph languages have been shown to be closed

under set-theoretic operations such as finite union and

intersection , and geometric operations such as permutation

(of arc end numbering and node labels), concatenation , and

formation of line graphs. Under the set-theoretic operations ,

determinism is ~tlways preserved. However, under the geometric

operation, determinism is known to be preserved only when

the languages are also predicates.

Many of the common operations on graphs such as join,

• product and composition were not considered in this paper ,

because there is no bound on the degrees of the resulting

• graphs; their degrees depend on the numbers of nodes in the

given graphs. The (geometric) union of two connected graphs

gives a graph that is not connected .

Another geometric operation which preserves connectivity

and boundedness of degree on d-graphs is simple (or elementary)

contraction. A simple contraction of a graph G is obtained by

identifying two adjacent nodes u,v, i.e., by the removal of

u and v and the addition of a new node w adjacent to those

points to which u or v was adjacent. A simple contraction of a

degree d graph has degree ~2d. A simple contraction of a

4~~raph F is a 2d-graph whose underlying graph is a simple

contraction of the underlying graph of F. A simple contraction

of a cellular d-graph language L is a cellular 2d-graph

-
_ _ . _ _ • _ _
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language , since if there is a node with  more than d non-I

• neighbors then we can partition its arcs into two sets of

d arcs and treat it as two nodes to test whether the d-graph

is in I. If all nodes have ~.d non-I neighbors, then one has

to systematically test every partition of the arcs at every

H node into two sets of d arcs each. The operation of contrac-

tion, meaning a sequence of elementary contradictions , can

produce graphs of arbitrarily high degree.

li lt - - •  ~
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